Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmacol Rep ; 72(3): 600-611, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32399819

RESUMO

BACKGROUND: Orofacial pain is clinically challenging, having therapeutic failures and side effects. This study evaluated the antinociceptive activities of the CTK 01512-2 toxin, the TRPA1 channel antagonist, and the selective inhibitor of the N-type voltage-gated calcium channels (N-type VGCC), in different pain models. MATERIALS AND METHODS: The trigeminal ganglia were stimulated in vitro with capsaicin. The in vivo models received subcutaneous (sc) injections of formalin into the upper lip of the rats, Freund's Complete Adjuvant (FCA) into the temporomandibular joint (TMJ), and infraorbital nerve constrictions (IONC). CTK 01512-2 at concentrations of 30, 100, and 300 pmol/site, intrathecally (ith), and MVIIA at 10, 30, and 100 pmol/site in the formalin test, guided the doses for the models. The glutamate levels in the CSF of the rats that were submitted to IONC were analyzed. RESULTS: CTK 01512-2 decreased the nociceptive behavior in the inflammatory phase of the formalin test (65.94 ± 7.35%) and MVIIA in the neurogenic phase (81.23 ± 3.36%). CTK 01512-2 reduced facial grooming with FCA in the TMJ (96.7 ± 1.6%), and in the IONC neuropathy model, it decreased heat hyperalgesia (100%) and cold hyperalgesia (81.61 ± 9.02%). The levels of glutamate in the trigeminal ganglia in vitro (81.40 ± 8.59%) and in the CSF in vivo (70.0 ± 9.2%) were reduced. CONCLUSIONS: The roles of TRPA1 in pain transduction and the performance of CTK 01512-2 in the inhibition of the N-type VGCCs were reinforced. This dual activity may represent an advantage in clinical treatments.


Assuntos
Analgésicos/farmacologia , Dor Facial/tratamento farmacológico , Canal de Cátion TRPA1/antagonistas & inibidores , ômega-Conotoxinas/farmacologia , Animais , Canais de Cálcio Tipo N/metabolismo , Capsaicina/farmacologia , Modelos Animais de Doenças , Adjuvante de Freund , Ácido Glutâmico/metabolismo , Hiperalgesia/tratamento farmacológico , Masculino , Neuralgia/tratamento farmacológico , Medição da Dor , Ratos , Ratos Wistar
2.
Pharmacol Rep, v. 72, p. 47-54, jan. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2925

RESUMO

Background Diabetic neuropathy is a common cause of painful diabetic neuropathy (PDN). C-X-C chemokine receptor type 4 (CXCR4) expression is increased in peripheral nerve samples from diabetes patients, suggesting a role for CXCR4 in PDN. Therefore, we evaluated the effects of Pha1ß, Ômega-conotoxin MVIIA, and AMD3100 in a model of streptozotocin (STZ)-induced PDN in rodents and naïve model of rats with the activation of the CXCR4/stromal cell-derived factor 1 (SDF-1) signal. Methods Diabetic neuropathy was induced by intraperitoneal (ip) injection of STZ in Wistar rats. Naïve rats were intrathecally injected with SDF-1 to test the CXCR4/SDF-1 signal. The effects of Pha1ß intrathecal (it), Ômega-conotoxin MVIIA intrathecal (it), and AMD3100 intraperitoneal (ip) on rat hypersensitivity, IL-6, and the intracellular calcium [Ca2+]i content of diabetic synaptosomes were studied. Results The drugs reduced the hypersensitivity in diabetic rats. SDF-1 (1.0 µg/it) administration in naïve rats induced hypersensitivity. Pha1ß (100 pmol/it) or AMD3100 (2.5 µg/ip) reduced this hypersensitivity after 2 h treatments, while Ômega-conotoxin MVIIA did not have an effect. IL-6 and [Ca2+]i content increased in the spinal cord synaptosomes in diabetic rats. The drug treatments reduced IL-6 and the calcium influx in diabetic synaptosomes. Conclusions Pha1ß, Ômega-conotoxin MVIIA, and AMD3100, after 2 h of treatment of STZ-induced PDN, reduced hypersensitivity in diabetic rats. In naïve rats with CXCR4/SDF-1 activation, the induced hypersensitivity decreased after 2 h treatments with Pha1ß or AMD-3100, while Ômega-conotoxin MVIIA did not affect. The inhibitory effects of Pha1ß on PDN may involve voltage-dependent calcium channels.

3.
Pharmacol Rep ; 72: 47–54, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17410

RESUMO

Background Diabetic neuropathy is a common cause of painful diabetic neuropathy (PDN). C-X-C chemokine receptor type 4 (CXCR4) expression is increased in peripheral nerve samples from diabetes patients, suggesting a role for CXCR4 in PDN. Therefore, we evaluated the effects of Pha1ß, Ômega-conotoxin MVIIA, and AMD3100 in a model of streptozotocin (STZ)-induced PDN in rodents and naïve model of rats with the activation of the CXCR4/stromal cell-derived factor 1 (SDF-1) signal. Methods Diabetic neuropathy was induced by intraperitoneal (ip) injection of STZ in Wistar rats. Naïve rats were intrathecally injected with SDF-1 to test the CXCR4/SDF-1 signal. The effects of Pha1ß intrathecal (it), Ômega-conotoxin MVIIA intrathecal (it), and AMD3100 intraperitoneal (ip) on rat hypersensitivity, IL-6, and the intracellular calcium [Ca2+]i content of diabetic synaptosomes were studied. Results The drugs reduced the hypersensitivity in diabetic rats. SDF-1 (1.0 µg/it) administration in naïve rats induced hypersensitivity. Pha1ß (100 pmol/it) or AMD3100 (2.5 µg/ip) reduced this hypersensitivity after 2 h treatments, while Ômega-conotoxin MVIIA did not have an effect. IL-6 and [Ca2+]i content increased in the spinal cord synaptosomes in diabetic rats. The drug treatments reduced IL-6 and the calcium influx in diabetic synaptosomes. Conclusions Pha1ß, Ômega-conotoxin MVIIA, and AMD3100, after 2 h of treatment of STZ-induced PDN, reduced hypersensitivity in diabetic rats. In naïve rats with CXCR4/SDF-1 activation, the induced hypersensitivity decreased after 2 h treatments with Pha1ß or AMD-3100, while Ômega-conotoxin MVIIA did not affect. The inhibitory effects of Pha1ß on PDN may involve voltage-dependent calcium channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...